Ремонт бесперебойника

Введение

UPS указанной модели в случае отключения питания к силу своей схемной реализации способен лишь обесточить нагрузку, сам он остается включенным. В данной статье описывается, как устранить этот недостаток.

Описанное здесь устройство можно использовать с любой моделью Back-UPS, но в этом случае приведенная здесь информация о коммуникационном порте может оказаться неверной.

Обзор UPS, коммуникационного порта и интерфейсного кабеля 940-0020B

Источник бесперебойного питания APC Back UPS 600I имеет топологию StandBy (Off-Line) – рис. 1.

Рис. 1. Топология StandBy

UPS, построенный по данной схеме, нередко называют термином «Off-Line UPS». В каждый конкpетный момент вpемени он может находиться в одном из 2 pежимов pаботы — Stand-by или On-line. В случае, когда напpяжение в сети находится в допустимых пpеделах (Standby mode), transfer switch пеpеключен на пpотекание тока нагpузки по цепи «Surge suppressor — Filter». В этом pежиме UPS ничем не отличается от обыкновенного сетевого фильтpа. Hикакой стабилизации напpяжения не пpоисходит. Во вpемя pаботы в этом pежиме также пpоисходит заpядка аккумулятоpных батаpей UPS.

В случае выхода напpяжения сети за допустимые пpеделы, transfer switch пеpеключается на питание нагpузки по цепи «Battery — DC/AC inverter» (On-line mode), т.е. от энеpгии аккумулятоpной батаpеи, пpеобpазуемой инвеpтоpом в AC 220V. Так как пеpеключение контактов и запуск инвеpтоpа не могут пpоисходить мгновенно, питание нагpузки будет пpеpвано на некотоpое вpемя (Transfer Time). Большинство Standby UPS обеспечивают Transfer Time поpядка 4-8 ms. Особенность данной системы в том, что пеpеключение в On-Line пpи выходе напpяжения сети за допустимые пpеделы пpоисходит немедленно, а возвpат в Standby mode — с обязательной задеpжкой в несколько секунд. Иначе, пpи многокpатных бpосках напpяжения в сети, происходило бы непpеpывное пеpеключение Standby/On-Line и обpатно, что пpивело бы к значительным искажениям тока нагpузки и возможному выходу ее из стpоя или к сбою в ее pаботе.

Пpи этом следует учесть, что данная схема обычно не обладает возможностью стабилизации напpяжения пpи pаботе в Standby mode и, следовательно, пеpеходит в On-Line пpи каждом отклонении напpяжения сети. Разpяд аккумулятоpной батаpеи пpоисходит намного быстpее, чем обpатный заpяд. Мощность battery charger’а для данной схемы обычно выбиpается сpавнительно малой, и pасхода энеpгии от батаpей во вpемя brownout’ов не компенсиpует. Следовательно, для применения в случае низкого качества питающей сети данная топология UPS малопpигодна по двум пpичинам: 

  • а) Пpи частых пеpеходах в On-Line батаpея достаточно быстpо pазpяжается, не успевая восстановить заpяд за вpемя Standby mode, в pезультате чего UPS теpяет способность обеспечить аваpийное питание нагpузки в течение тpебуемого вpемени;

  • б) Частое повтоpение циклов pазpяд/заpяд сокpащает сpок службы аккумулятоpных батаpей.

Описание топологии взято из (см. список используемых источников в конце статьи).

Коммуникационный порт

UPS имеет коммуникационный порт (рис. 2) для связи с COM-портом компьютера.

Рис. 2. Коммуникационный порт APC Back UPS

Назначение ножек порта:

  1. 1. Shutdown UPS. При батарейном питании напряжение высокого уровня RS-232 вызывает отключение инвертора и обесточивание нагрузки. UPS реагрует на этот сигнал только при питании нагрузки от батареи. На сайте APC указано, что сигнал должен действовать в течении 1 секунды, однако экспериментальная проверка показала, что UPS реагирует на сигнал немедленно.
  2. 2. Line Fail. В уровнях RS-232. Высокий уровень означает переход на батарейное питание.
  3. 3. Line Fail. Открытый коллектор. Нормально открыт.
  4. 4. GND
  5. 5. Battery Low. Открытый коллектор. Нормально открыт.
  6. 6. Line Fail. Открытый коллектор. Нормально закрыт.
  7. 7. Не используется.
  8. 8. Не используется
  9. 9. GND

Высокий уровень RS-232 – около +12в относительно земли порта, низкий – около –12в.

Примечание: при разработке каких-либо промежуточных схем можно использовать и ТТЛ уровни. UPS и COM-порт на них реагируют нормально.

Информация о разводке порте и назначении его контактов официальная, взята из (см. список используемых источников в конце статьи).

Простые методы устранения этих неисправностей

Кто виноват, в основных проблемах ИБП – уже предположили, теперь осталось решить, что делать. Получилось практически по Шекспиру!

  • UPS пищит. Если в процессе работы устройство достаточно часто издает звуковой сигнал, то это может означать сильные перебои в подаче электричества. Тут необходимо разобраться с качеством электросети. Если причина писка перегрузка, то изначально следует выяснить, какое устройство ее создает. Для этого нужно отсоединить все источники нагрузки, включить «бесперебойник» и по одному подсоединять. Если это не помогло, то причина писка может в проблемах электроники, но с ней, лучше всего обратиться в сервисный центр.
  • ИБП не включается. Прежде всего, следует проверить подключение сетевого кабеля и предохранителей, которые находятся, как правило, на задней стенке устройства. Если причина не в этом, то попробуйте оставить включенное в сеть устройство на ночь, таким образом, зарядив батарею. Если батарея не заряжается от бесперебойника, то можно поставить ее на зарядку в специальное устройство (если есть) или заменить на заведомо исправный и заряженный АКБ. Если и это не помогло, то, скорее всего, проблема кроется намного глубже, и в таком случае сделать ремонт ибп своими руками у вас не получиться.Выход – обратиться к специалистам для диагностики и ремонта ИБП.
  • UPS не держит нагрузку. Прежде всего, необходимо проверить, сколько может работать устройство без сети.

    Если хоть немного получилось, то проблема, скорее всего в потере емкости аккумулятора. Проверить это достаточно легко, подключив к бесперебойнику в качестве нагрузки 100 ватную лампу накаливания. Стандартный АКБ, имеет емкость 7 А/ч . Хорошая батарея будет поддерживать работу лампы не менее 20 мин. Если это время сократится на половину, то АКБ следует заменить.

  • ИБП отключается. Опять же грешим на батарею. Если с батареей все в порядке, и вы уверены в ее емкости, то проблема в электронике. Однозначно – в сервисный центр.

Безтранформаторные источники питания

Конечно, всегда возникал вопрос: а можно ли вообще обойтись без трансформатора? Здесь ответ неоднозначный. И можно и нельзя. Более того, существуют безтрансформаторные источники питания. Для снижения напряжения применяют конденсатор. Конденсатор характеризуется реактивным сопротивлением при работе в цепях переменного тока. Именно это свойство благополучно используется. Однако зависит обратно пропорционально от его емкости. Поэтому с увеличением нагрузки необходимо применять конденсатор большей емкости, что очень сказывается на его размерах. Кроме того возрастает его цена, поскольку он должен быть рассчитан на 400…450 В. Помимо всего прочего, использование реактивного сопротивления негативно влияет на качестве электроэнергии питающей сети. Снижается коэффициент мощности cosφ. Но самый главный недостаток заключается в отсутствии гальванической развязки. Это исключает применение подобных схем в преимущественном большинстве радиоэлектронной аппаратуре.

Как снизить массу и габариты трансформатора

Так вот, мощность любого узла ИБП определяется всего двумя параметрами: напряжением и током.

P = U∙I.

Полная мощность трансформатора (Т) также определяется произведением тока на напряжение. Поэтому давайте рассмотрим, как зависят габариты Т от величины приложенного U и протекающего I. Возможно, здесь у нас получится на что-то повлиять.

Напряжение или, точнее говоря, ЭДС данного электромагнитного устройства определяется частотой приложенного напряжения f, количеством витков w и магнитным потоком Φ.

E = 4,44∙f∙w∙Φ

Коэффициент 4,44 уберем для упрочения, поскольку он соответствует синусоидальной форме тока. В импульсных блоках питания, где форма сигнала имеет вид прямоугольника, это коэффициент имеет другое значение.

E ~ f∙w∙Φ

Магнитный поток представляет собой произведение магнитной индукции B на площадь поперечного сечения сердечника магнитопровода Sс.

E ~ f∙w∙B∙Sс

Давайте поразмыслим над этой формулой с интересующей нас позиции. Размеры Т определяются размерами его сердечника и обмотками. Упрощенно говоря, мы можем вполне обосновано сказать, что габариты сердечника зависят от площади поперечного сечения сердечника (магнитопровода) Sс. А габариты обмотки зависят от числа витков w.

Теперь становится очевидно, что для сохранения прежней величины электродвижущей силы E при снижении числа витков w и площади поперечного сечения Sс, а соответственно и габаритов трансформатора, необходимо повышать или частоту или индукцию или эти два параметра одновременно.

Преимущественное большинство сердечников промышленных трансформаторов выполняются из электротехнической стали. Такая сталь имеет индукцию насыщения порядка 1,7 Тл. Это довольно большое значение индукции. Выше только у чистого железа, обладающего максимально возможной индукцией из всех магнитных материалов, и составляет чуть более 2 Тл. К сожалению, чистое железо не пригодно к использованию в электромагнитных устройствах вследствие сильных потерь энергии при перемагничивании.

Альтернативные магнитные материалы

Также в ряде стран применяется пермаллой. Пермаллой имеет несколько меньшую индукцию, чем электротехническая стать, но обладает большим электрическим сопротивлением. Благодаря чему снижаются потери на вихревые токи, а соответственно и потери холостого хода.

Относительно недавно на рынке в доступной цене появились аморфные и нанокристаллические сплавы. Они обладают высоким электрическим сопротивлением, при этом индукция их приближается к электротехническим сплавам. Кроме того они обладают рядом положительных свойств, превосходящих другие магнитные материалы. Но на этом мы здесь останавливаться не будем.

Однако индукция известных на сегодняшний день магнитных материалов и сплавов не достигает величины, значительно превосходящей индукцию электротехнической стали, то есть более 1,7 Тл. Поэтому сейчас невозможно существенно снизить габариты электромагнитного устройства за счет применения новых магнитных материалов. Поэтому остается единственный способ, который даст ощутимое снижение массы и размеров – это повышение частоты f переменного тока.

Изготовление трансформатора

Так как у нас кольцо, скорее всего грани его будут под углом 90 градусов, и если провод мотать прямо на кольцо, возможно повреждение лаковой изоляции, и как следствие межвитковое КЗ и тому подобное. Дабы исключить этот момент, грани можно аккуратно спилить напильником, или же обмотать Х/Б изолентой. После этого можно мотать первичку.

После того как намотали, еще раз заматываем изолентой кольцо с первичной обмоткой.

Затем сверху мотаем вторичную обмотку, правда тут чуть сложней.

Как видно в программе, вторичная обмотка имеет 6+6 витков, и 6 жил. То есть, нам нужно намотать две обмотки по 6 витков 6 жилами провода 0,63 (можно выбрать, предварительно написав в поле с желаемым диаметром провода). Или еще проще, нужно намотать 1 обмотку, 6 витков 6 жилами, а потом еще раз такую же. Что бы сделать этот процесс проще, можно, и даже нужно мотать в две шины (шина-6 жил одной обмотки), так мы избегаем перекоса по напряжению (хотя он может быть, но маленький, и часто не критичный).

По желанию, вторичную обмотку можно изолировать, но не обязательно. Теперь после этого припаиваем трансформатор первичной обмоткой к плате, вторичную к выпрямителю, а выпрямитель у меня использован однополярный со средней точкой.

Расход меди конечно больше, но меньше потерей (соответственно меньше нагрева), и можно использовать всего одну диодную сборку с БП АТХ отслуживший свой срок, или просто нерабочий. Первое включение обязательно проводим с включённой в разрыв питания от сети лампочкой, в моем случае просто вытащил предохранитель, и в его гнездо отлично вставляется вилка от лампы.

Если лампа вспыхнула и погасла, это нормально, так как зарядился сетевой конденсатор, но у меня данного явления не было, либо из-за термистора, или из-за того, что я временно поставил конденсатор всего на 82 мкФ, а может все месте обеспечивает плавный пуск. В итоге если никаких неполадок нету, можно включать в сеть ИИП. У меня при нагрузке 5-10 А, ниже 12 В не просаживалось, то что нужно для питания авто усилителей!

Качество выдаваемого тока

Бесперебойные источники питания должны выдавать ток надлежащего качества. При работе от батарей за это отвечает инвертор, а в случае питания от сети, проблемные моменты должны сглаживать фильтры и стабилизатор. Возникающие в электрической цепи помехи имеют разный генезис и последствия для электроники. Поэтому в этом вопросе тоже нужно тщательно разобраться.

Сетевые помехи и защита

Все современные ИБП оснащены защитой от проблем, связанных со стороны обслуживаемых приборов. Если суммарная нагрузка будет превышать максимально допустимую или произойдет короткое замыкание, то бесперебойник сразу отключит питание.

Помехи в сети можно условно разделить на частотные и импульсные. Первые не так опасны, особенно для блоков питания компьютеров или телевизоров, которые преобразуют переменный ток в постоянный. Вторые могут вызвать проблему у любой электроники.

Поэтому большинство ИБП оснащены защитой от импульсов и гармоник с помощью варисторов и высокочастотных фильтров.

Удаление помех на линии происходит в два этапа. Сначала варисторы отсекают высокочастотные импульсы, а затем фильтр сглаживает мелкие скачки

Проблема появления высоковольтных импульсов характерна не только для силовых кабелей, но и для сетей передачи данных – компьютерных или телефонных. Они могут возникнуть по причине воздействия атмосферного электричества, пробоев рядом расположенной проводки, возникающих электрических наводок и других причин.

Многие производители выпускают модели с возможностью защиты локальной сети. Для этого у ИБП есть два разъема RJ-45 – один на вход и один на выход. Сигнал проходит через фильтр, который подавляет всплески напряжения. Для телефонных линий система такая же, только разъемы имеют формат RJ-11.

Низкое и высокое напряжение

Регулировка вольтажа происходит с помощью автоматического регулятора напряжения (AVR), основным элементом которого служит автотрансформатор. Принцип его функционирования опирается на изменении количества витков одной из обмоток, в результате чего происходит изменение напряжения в сторону увеличения или уменьшения его значения.

Наличие AVR в ИБП позволяет не включать каждый раз автономный режим при незначительном отклонении напряжения от нормативных показателей. Это значительно увеличивает срок службы аккумуляторов.

Профессиональные мультиметры, такие как CEM DT 9909, способны в течение длительного времени записывать значение напряжения. Применение такого прибора может помочь в выборе стабилизатора или ИБП

Согласно ГОСТ 29322-2014 допустимо 10-и процентное отклонение напряжения от эталонного значения на время не более чем 1 час. Все современные ИБП с регуляторами справляются с такими колебаниями.

Чистота выходящего сигнала

От модели инвертора, которая установлена в бесперебойник, зависит тип выходного сигнала. В идеале, кривой напряжения переменного тока должна быть синусоида. Но после преобразования через инвертор она принимает ступенчатый вид.

Чем больше количество ступенек в кривой зависимости мгновенного напряжения от времени, тем лучше качество переменного тока

Для некоторых устройств это важно. Для оборудования, которое содержит асинхронные электродвигатели (холодильник, кондиционер), трансформаторные блоки питания (качественная аудиотехника), блоки питания APFC (сервера и мощные вычислительные компьютеры) нужна чистая или хорошо аппроксимированная синусоида

Для оборудования, которое содержит асинхронные электродвигатели (холодильник, кондиционер), трансформаторные блоки питания (качественная аудиотехника), блоки питания APFC (сервера и мощные вычислительные компьютеры) нужна чистая или хорошо аппроксимированная синусоида.

Ни один инвертор, а значит, и ИБП не выдает чистую синусоиду, чтобы не писали в рекламных брошюрах производители оборудования. Приближение выходящего сигнала к синусоиде оценивают через коэффициент нелинейных искажений (THD).

Выходящий от блока сигнал можно считать синусоидальным при THD

Подбор деталей

Сразу скажу, что расчетом мощности трансформатора, его магнитопровода, обмоток и их намоткой я не занимался. Я взял готовый трансформатор подходящих габаритов, т.к. между батареей UPS и его передней стенкой довольно мало места (5-6 см). Выключатель SW1 я смонтировал на задней стенке UPS, все остальные элементы – спереди, между батареей и передней стенкой корпуса UPS.

Внимание! Перед сборкой не забудьте отключить UPS от сети, отключить батарею и разрядить электролиты на плате включением UPS без входного сетевого напряжения и батареи. При этом UPS издаст кратковременный звуковой сигнал

Найти реле на 5 вольт может оказаться довольно трудной задачей – мне с трудом удалось найти только PЭC59. В таком случае можно взять, например, РЭС22, трансформатор на 12-15 вольт, увеличить токоограничивающие резисторы R2 и R3 до 2-3 кОм и использовать электролитический конденсатор C1 на напряжение не менее 16 в. R1 при этом можно не ставить, т.к. РЭС22 штука довольно мощная и электролит блока питания разряжается достаточно быстро.

В цепи выключателя действует напряжение 12 вольт при токе макс. 65 mA. Токи и напряжения переходных процессов не измерялись.

Хотелось бы обратить внимание на следующую особенность некоторых реле (например, того же РЭС59). У них есть электрическая связь между корпусом и контактной группой, поэтому при использовании такого реле необходимо позаботиться об изолировании его корпуса от металлического корпуса UPS

Если этого не сделать, то при первом же включении сгорит предохранитель на 1А, расположенный на плате UPS в цепи выключателя. По внешнему виду этот предохранитель похож на небольшой резистор или диод. Мне пришлось впаивать туда обычный стеклянный предохранитель отечественного (советского) производства взамен сгоревшего родного. Реле РЭС22 лишено этого недостатка.

Переделка в источник 12 В

Вначале для того, чтобы получить блок питания из бесперебойника своими руками, следует при помощи крестовой отвертки снять крышку корпуса. После этого находится сердечник трансформатора импульсного типа. Далее производится замер линейных размеров сердечника при помощи линейки или штангенциркуля. Допустимые значения площади — 1 см2, так как сердечник таких размеров способен создавать мощность в зарядной цепи до 100 Вт.

На практике для подзарядки любого бытового электроприбора хватает 60 Вт, в частности АКБ.

В архитектуре микросхемы блока практически на 100 % используется схема с маркировкой TL494. На ней оставляются только цепи с элементами с напряжением в +12 В, остальные цепи выпаиваются. Опорный резистор R43 в схеме заменяется на пару из постоянного и переменного резисторов R431 и R432. На этом переделка ИБП в зарядное устройство закончена. Надевают крышку и привинчивают винты.

Схемы ИБП переменного тока

Для бытовых нужд используют устройства для бесперебойного питания, подключаемые к однофазной сети 220 В, которые могут некоторое время при отсутствии электроэнергии питать потребителей, требующих такого же напряжения.

Существуют также ИБП, которые подключены на вход к трехфазной сети, а на выход дают или 380 В или 220 В. Однако они дороги, их используют при необходимости получать автономную мощность от 10 кВ·А, что для бытовых нужд не требуется.

Бытовые ИБП переменного тока по схеме функционирования делят на следующие типы:

  • резервные (оффлайн);
  • интерактивные (линейно-интерактивные);
  • двойного преобразования (онлайн).

Они различаются качеством выдаваемого напряжения и ценой. Наиболее дешевые – резервные, а самые дорогие – двойного преобразования.

Самая простая в исполнении резервная схема питания предполагает наличие переключающего реле и пассивной фильтрации для подавления помех

Для преобразования переменного тока в постоянный в зарядном устройстве используют выпрямитель. А обратная трансформация происходит при помощи инвертора.

В бесперебойниках для переключения цепи с сети на аккумулятор, как правило, устанавливают обыкновенные электромеханические реле. Если эта деталь качественная, то ее ресурса хватает на все время функционирования ИБП. Но чаще всего, при поломке блока проблема кроется именно в этом элементе конструкции.

Интерактивная схема отличается от резервной наличием стабилизатора напряжения. Он выполнен в виде типичного автотрансформатора с соединенными напрямую обмотками

Стабилизация напряжения присутствует также во многих бытовых устройствах, поэтому если отклонения незначительны, то и нет смысла приобретать более дорогую линейно-интерактивную модель.

Наличие трансформатора часто вынуждает производителя использовать принудительное охлаждение, поэтому такие ИБП комплектуют кулерами. Они издают шум, по интенсивности сравнимый с работой компьютерного системного блока.

Питание инвертора при схеме онлайн происходит на постоянной основе от аккумуляторов. Поэтому при возникновении сбоев в электросети время переключения на резервное питание равно нулю

Самые сложные и дорогие приборы двойного преобразования имеют к тому же наименьший КПД. Электроэнергия уходит в тепло, которое излучает устройство. Поэтому их использование необходимо обосновать.

Наиболее значимый плюс такого вида бесперебойников заключается в мгновенной реакции на отключение электричества

Но для большинства бытовой техники это не так важно. Те же компьютеры обычно комплектуют ИБП резервного или интерактивного типа

Зарядка

Поскольку встроенные в UPS аккумуляторы автоматически поддерживаются в заряженном состоянии, нет необходимости в их дополнительной зарядке. Если аккумулятор был полностью разряжен, ряд моделей бесперебойников в момент включения могут индицировать неисправность аккумулятора, однако по мере набора им заряда индикация прекратится.

Как правило, при первом включении ИБП ему нужно 5-6 часов для полной зарядки аккумулятора. Ряд нюансов эксплуатации зависят от типа применяемого аккумулятора:

  • Наиболее дешевые аккумуляторы, выполненные по технологии AGM (ошибочно либо намеренно могут называться продавцами гелевыми) не рекомендуется длительно оставлять разряженными, так как это ведет к их деградации и потере емкости. Если ИБП не используется длительное время, стоит регулярно включать его вхолостую, чтобы поддержать заряд аккумулятора.
  • Настоящие гелевые аккумуляторы дороже, но без последствий переносят длительный глубокий разряд. Одновременно они более чувствительны к перезаряду, что может произойти при установке в ИБП батареи емкостью меньше, чем рассчитано.

Если же существует необходимость зарядить аккумулятор от внешнего зарядного источника, крайне важно ограничить зарядный ток значением не более 10% от номинала емкости (так, аккумулятор емкостью 4 А*ч можно заряжать током не более чем 0,4 А).

Схема линейного блока питания

Основные задачи любого промышленного БП заключаются в снижении переменного напряжения 220 В (230 В) до требуемой величины, затем его выпрямление, сглаживание и стабилизация.

Поэтому любая схема линейного бока питания обязательно содержат как минимум следующие элементы: трансформатор, выпрямитель, фильтр, узел стабилизации. Назначение каждого элемента было более полно рассказано здесь.

Теперь, глядя на составляющие функциональной схемы линейного БП, давайте рассуждать, какие элементы приводят к росту его массы и веса. В качестве выпрямителя чаще служит диодный мост. Снизить его размеров не даст особого эффекта. Да и реализовать этот будет затруднительно.

Узел стабилизации может быть реализован по-разному. Поэтому на нем мы тоже сэкономить мало что сможем. Остаются только два элемента: фильтр и трансформатор. Фильтр представляет собой большой емкости. Но изменение его параметров, как мы увидим далее, не позволит получить сколь-нибудь ощутимый выигрыш. Остается исследовать возможности способы минимизации трансформатора.

Основная задача его заключается в передаче мощности со стороны источника высокого на сторону низкого напряжения. При этом необходимо обеспечить гальваническую развязку высоковольтных с низковольтными цепями. Гальваническая развязка необходима для преимущественного большинства устройств по условиям безопасности, как персонала, так и низковольтного оборудования. А трансформатор, как никакой другой элемент выполняет эти и другие условия. При этом он имеет максимальный коэффициент полезного действия, достигающий 99 %. По этой причине ему до сих пор не могут найти альтернативу, за что приходится расплачиваться повышенной массой и размерами в целом БП.

Резервный источник бесперебойного питания

От правильности выбора компонентов всей системы зависит работоспособность устройства в целом. Для ИБП придется выбирать три отдельных устройства. Разберем их в том порядке,который был указан выше.

  1. Инвертор-преобразователь. Как и говорилось выше,такие адаптеры могут отличаться по двум признакам,которые в данном случае очень важны.
  • форма выходного сигнала – в этом отношении она может иметь чистую синусоиду и модифицированную аппроксимацию. Не будем внедряться в то,что это такое,а скажем просто – инвертор с чистой синусоидой на выходе дает качественное электричество и способен питать любые электроприборы,в том числе и современный газовый котел,и холодильник,и все прочее. Если же говорить о модифицированном выходном сигнале,то от него отлично работают лампы(правда,не все,некоторые из них быстро выходят из строя),нагревательные элементы,компьютеры,телевизоры,но никак не котлы. С потребителями,у которых имеются электродвигатели,также возникают проблемы – они работают,но греются и быстро выходят из строя. 
  • Во-вторых,это мощность – ее придется рассчитывать исходя из суммарного потребления всех электроприборов в доме. В принципе,при выборе можно ориентироваться и на самый мощный потребитель вашего дома – к примеру, бойлер или стиральная машина,которые потребляют не более 2,5кВт. В общем,в среднем для системы резервного электропитания используется инвертор мощностью 3кВт.

Аккумулятор. Здесь все достаточно просто – чем больше емкость аккумулятора,тем дольше вы сможете пользоваться накопленной энергией. На выбор инвертора емкость аккумулятора не оказывает никакого влияния. Исходя из собственного опыта могу сказать одно – аккумулятор емкостью 95А/ч способен обеспечивать потребителя мощностью в 100Вт на протяжении более 10-ти часов. 
Зарядное устройство. Его выбор обусловлен емкостью аккумуляторов. Скажем так,чтобы емкость в 100 А/часов заряжалась в течение 5-7 часов,понадобится зарядное устройство с выходным током в 10 Ампер.

В принципе,все. Очевидно,что требования к выбору оборудования не очень сложные.

Как выбрать подходящий

Выбирать ИБП следует, исходя из ситуации, в которой он вам понадобится. Если компьютер мощный или вы используете локальную сеть, то лучше выбирать самый дорогой и мощный бесперебойник, который обеспечит стабильную работу сети. Идеальным вариантом в этом случае станет устройство с двойной схемой.

Для поддержания работоспособности небольших компьютеров, а также электрических приборов в дачах и коттеджах лучше воспользоваться обычными ИБП с небольшой мощностью на базе интерактивной или резервной схемы. Важным фактором является предпочтительная ценовая категория, в рамках которой подбирается машина.

Однотактная схема ИБП

    Однотактная схема ИБП представляет из себя преобразователь переменного напряжения сети (или постоянного напряжения аккумуляторной батареи) одной величины, в постоянное (выпрямленное) напряжение другой величины.
Генератор ВЧ напряжения, частотой 20 – 100 килогерц, может быть с самовозбуждением (автогенератор) или с внешним возбуждением (дополнительный генератор).
В маломощных (до10 ватт) и простых ИБП в основном применяется самовозбуждающийся автогенераторный преобразователь.
    Смотрите схему простого однотактного, с самовозбуждением, импульсного источника питания.
    Однотактная схема ИБП состоит из выпрямителя (Д1 – Д4) со сглаживающим конденсатором С1. В нем напряжение сети 220 вольт преобразуется в постоянное напряжение 310 вольт. Затем с помощью генератора импульсного напряжения (транзистор Т, трансформатор Тр), вырабатываются импульсы прямоугольной формы. С вторичной обмотки прямоугольные импульсы поступают на выпрямитель (Д6) со сглаживающим конденсатором (С5), получается постоянное напряжение.
Само преобразование напряжения происходит на ферритовом трансформаторе. Выходное напряжение зависит от соотношения витков в первичной и вторичной обмотках трансформатора.
    Существенным недостатком однотактной схемы преобразователя является большое напряжение самоиндукции, наводимое в первичной обмотке трансформатора, превосходящее входное напряжение питания Eп в 2-4 раза. В таких схемах нужны транзисторы, имеющие максимальное напряжение коллектор — эмиттер равное 700-1000 вольт.

Применяют различные способы снижения выбросов напряжения на коллекторе транзистора:
— включаются RC цепочки (С2, R3) параллельно первичной обмотке трансформатора и конденсатор C4 в цепи вторичной обмотки.
— при использовании дополнительных устройств стабилизации выходного напряжения, например широтно – импульсной модуляции (ШИМ), возможна работа однотактного ИБП при изменении подключаемой нагрузки в широких пределах (от Р=0 до Pmax) при неизменном выходном напряжении.
Применяются и другие технические приемы защиты ключевого транзистора от перенапряжения.

Плюсы и минусы однотактной схемы ИБП.

Плюсы:
— один ключевой транзистор в схеме,
— схема проще, чем двухтактная.

Минусы:
— намагничивание ферритового сердечника происходит только в одной полярности, (пассивное размагничивание сердечника), вследствие чего не полностью используется магнитная индукция сердечника. Не полностью используется ферритовый сердечник по мощности

Необходим зазор в магнитном сердечнике.
— при среднем токе потребления от сети, ток через транзистор больше в n-раз (зависит от скважности импульсов) и потому необходимо выбирать транзистор с заведомо большим максимальным током.
— возникают большие перенапряжения на элементах схемы, достигающие 700 – 1000 вольт.
— необходимо применять специальные меры защиты от перенапряжения на элементах схемы

Выбор резистора для батареи

Возьмем допустим свинцово-кислотную батарею 12 В, емкость 10 А/ч 

  • Напряжение заряженного аккумулятора = 6 х 2,4 В = 14,4 В
  • Напряжение разряженной батареи = 10,8 В 

То есть чтобы зарядить аккумулятор необходимо, чтобы напряжение за этим ограничивающим резистором было больше 14,4 В. Резистор равен 220 Ом — во время зарядки на этом резисторе произойдет большое падение напряжения — очень низкий зарядный ток или придется подавать намного более высокое напряжение перед резистором, то есть повышается вторичное напряжение

Обращайте внимание и на мощность токоограничивающего резистора, потому что здесь это имеет значение

Аналогичный аварийный источник питания показан на другой схеме, здесь между диодным мостом и аккумулятором стоит лампочка (как резистор с переменным сопротивлением). С разряженной батареей — ограничение тока до разумного значения (горячая нить колбы), и в то же время не создает большого сопротивления (холодная нить) в конце зарядки. Очень простое и удобное решение как для бесперебойного светодиодного освещения, так и любого другого низковольтного устройства.

Схемы блоков питания

ПОТЕНЦИОМЕТР С ДИСТАНЦИОННЫМ УПРАВЛЕНИЕМ
ПИНГ-ПОНГ НА АРДУИНО
ПРОСТОЙ ФОНО-ПРЕДУСИЛИТЕЛЬ
Ссылка на основную публикацию